TP TC Multiplexage

Support : simulateur multiplexage

Pré requis (l'élève doit savoir): - Utiliser un ordinateur

<u>Objectif terminale :</u> L'élève doit être capable d'étudier un signal multiplexé.

<u>Matériel</u>

- Ordinateur

Compétences :

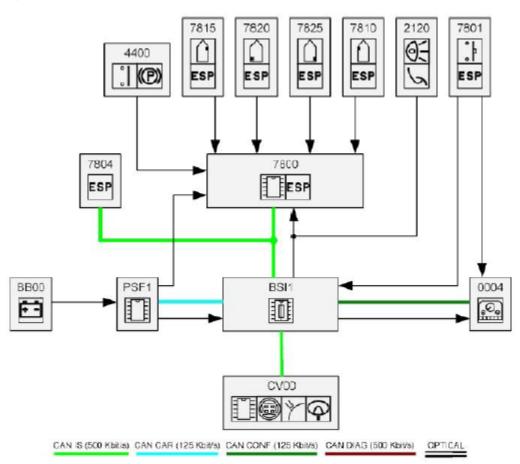
1. Travail demandé

1.2. Etude structurelle

	Pourquoi a-t 'on integre les circuits multiplexes dans les vehicules.
•	Quel est le type d'architecture du circuit multiplexé étudié voir schéma plus bas (expliquer votre réponse).
•	Sur un circuit multiplexé les différents types d'informations numériques transitent par une seule ligne composée de deux fils de cuivre sur lesquels circulent la totalité des informations. Comment elle s'appelle.
•	Comment reconnaît-on un fil multiplexé sur un véhicule.
•	A quoi servent les deux fils.

Tableau rappel

Décimal	Binaire	Hexadécimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9


10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

• En vous servant du rappel ci-dessus, complétez le tableau :

Identifiant hexadécimal	décimal	binaire
		110001001100

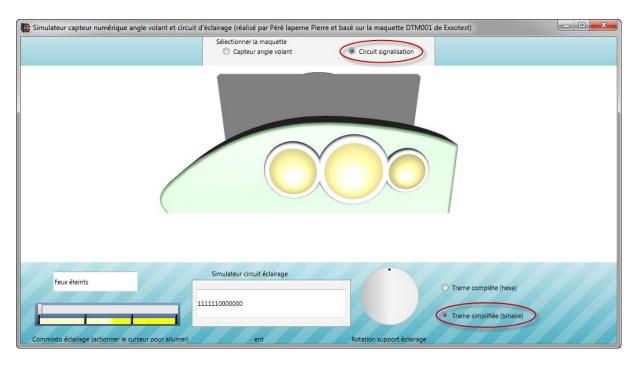
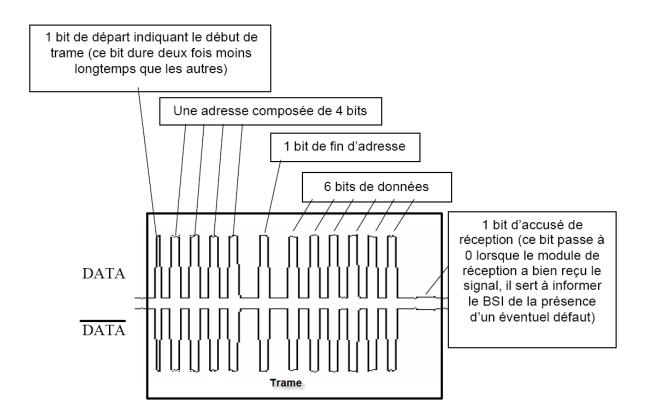

1.2. Etude pratique

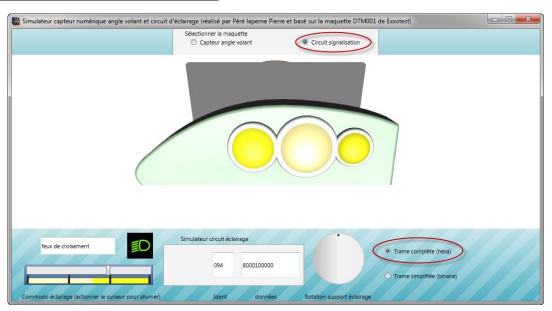
Schéma électrique véhicule PSA

Code élément	Désignation
0004	Combine
2120	Contacteur bifonction frein
4400	Contacteur de frein de stationnement
7800	Calculateur contrôle de stabilité
7801	Commutateur coupure contrôle de stabilité
7804	Gyromètre accéléromètre contrôle de stabilité
7810	Capteur contrôle de stabilité avant gauche
7815	Capteur contrôle de stabilité avant droit
7820	Capteur contrôle de stabilité arrière gauche
7825	Capteur contrôle de stabilité arrière droit
BB00	Batterie
BSI1	Boîtier de servitude intelligent
CV00	Module de commutation sous volant
PSF1	Platine servitude – boîte fusible compartiment moteur


Circuit signalisation (trame simplifiée)

- Allumer les feux de croisements,
- Donner la longueur de la trame en bit.

.....


• En vous aidant du document ci-dessous identifier chaque partie de la trame en remplissant le tableau ci-dessous en mettant des 1 ou des 0.

	Départ			ACK								
Trame AV							,					

Qu'est ce qui change au niveau de la trame si j'allume les feux de route.					

Circuit signalisation (trame 094 complète)

• En vous servant du rappel ci-dessus, complétez le tableau :

Identifiant hexadécimal	décimal	binaire
094		

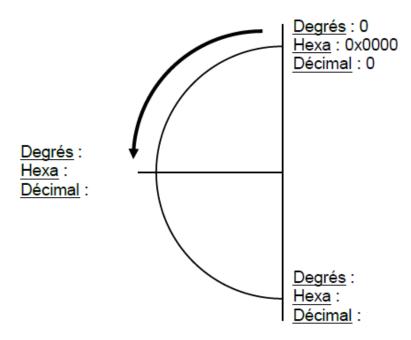
• Remplir le tableau ci-dessous en donnant la valeur de chaque octet (données)

Action réalisée	Octet0	Octet1	Octet2
Position repos			
Feux de position allumés			
Feux de croisement allumés			
Feux de route allumés			

Circuit capteur angle volant (trame 305 complète)

L'objectif est de déterminer la relation entre l'angle volant et la trame

Caractéristiques techniques angle volant

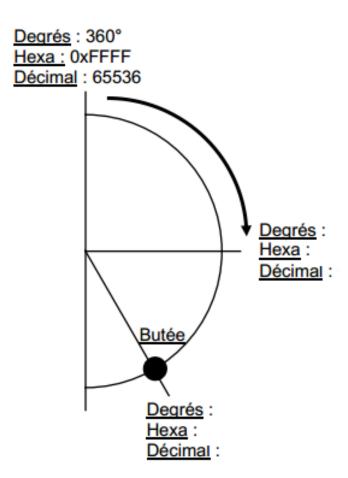

Résolution	1,5°
Tension d'alimentation	9v – 16v
Plage de travail	+/- 1080 °
Angle d'initialisation	<4.5° ~1.5 cm
Détection de la vitesse de rotation	0 – 2000 °/s

Etude de la rotation vers la gauche :

• Remplir le tableau ci-dessous

Rotation du volant vers la	Octet 0	Octet 1	Conversion binaire	Conversion décimal
gauche				
Position milieu				
1/4 de tour vers la gauche				
170				

• Compléter le schéma


• Définir une relation entre l'angle de rotation et la valeur du capteur en décimal sous la forme (y=b*x) :

Etude de la rotation vers la droite :

• Remplir le tableau ci-dessous

Rotation du volant vers la droite	Octet 0	Octet 1	Conversion binaire	Conversion décimal
Position milieu				
1/4 de tour droite				
170				

• Compléter le schéma

• Définir une relation entre l'angle de rotation et la valeur du capteur en décimal sous la forme (y=(b-x)/a) :

La rotation du volant vers la droite entraine un angle négatif. Dès que le calculateur va détecter une rotation vers la droite, il décompte à partir de 0xFFFF (65536).

• Calculer la valeur hexadécimale pour -180 et 196°